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Abstract
In this paper, we propose a quantum field theoretical renormalization
group approach to the vortex dynamics of magnetically coupled layered
superconductors, to supplement our earlier investigations on the Josephson-
coupled case. We construct a two-dimensional multi-layer sine–Gordon type
model which we map onto a gas of topological excitations. With a special choice
of the mass matrix for our field theoretical model, vortex dominated properties
of magnetically coupled layered superconductors can be described. The well
known interaction potentials of fractional flux vortices are consistently obtained
from our field theoretical analysis, and the physical parameters (vortex fugacity
and temperature parameter) are also identified. We analyse the phase structure
of the multi-layer sine–Gordon model by a differential renormalization group
method for the magnetically coupled case from first principles. The dependence
of the transition temperature on the number of layers is found to be in agreement
with known results based on other methods.

1. Introduction

Recently, we have shown that layered sine–Gordon type models are probably not suitable for
the description of Josephson-coupled layered superconductors, because the linear, confining
potential that binds the vortices together cannot be obtained from the interaction of the
topological excitations of the model, no matter how the interlayer interaction term is chosen [1].
On the other hand, vortex dominated properties of high Tc layered superconductors and
other types of layered materials, e.g. superconducting sandwiches, have already received a
considerable amount of attention (see, e.g., [2–16]), and the intuitively obvious connection of
sine–Gordon models to these materials makes one wonder if at least a restricted applicability of
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the layered, field theoretical model persists. We also observe that recently, there is increasing
interest in the literature [17–19] in constructing sine–Gordon type field theoretical models
in order to understand better the vortex dynamics in layered superconducting systems. Our
aim in this paper to follow this route by constructing a two-dimensional multi-layer sine–
Gordon type model which can be used to describe the vortex behaviour of magnetically as
opposed to Josephson-coupled layered superconductors, and to contrast and enhance our recent
investigation [1].

In a two-dimensional (2D) isolated superconducting thin film, the Pearl vortices [2, 14]
are naturally identified as the topological excitations and can be considered as the charged
analogues of the vortices in a 2D superfluid which generate the Kosterlitz–Thouless–Berezinski
(KTB) phase transition [20]. The logarithmic interaction between the vortices of the superfluid
extends to infinity and as a consequence they remain bound below the finite KTB transition
temperature (T �

KTB) and dissociate above it [20]. Since the Pearl vortices carry electric charge,
they always remain unbound due to the screening length λeff generated by the electromagnetic
field which cuts off the logarithmic interaction [4, 21, 22] and leads to the absence of any
KTB phase transition. However, for realistic finite 2D superconducting films where the lateral
dimension of the film can be smaller then the screening length R0 < λeff the KTB transition
can be restored [4, 21]. This constitutes an intrinsic finite size effect.

In layered materials, the interlayer coupling modifies the 2D picture and leads to new
types of topological defects. If the layers are coupled by Josephson coupling (like for many
HTSC materials) the vortex–antivortex pairs on the same layer interact with each other via a
logarithmic term for small distances but they feel a linear confining potential for large distances
(see e.g. [4] and references therein). The vortices in neighbouring layers always interact via
a linear potential which can couple them by forming vortex loops, rings, or vortex ‘strings’
piercing all layers.

If the layers are coupled by purely magnetic interaction (e.g. in artificially produced
superlattices where the Cooper pair tunnelling between the superconducting layers is
suppressed by relatively large insulating layers) the topological defects for a system which
consists of infinitely many layers are pancake vortices [10, 15] which undergo a KTB phase
transition at T �

KTB. As explained e.g. in [5], the Josephson coupling can be essentially neglected
when the confinement length, i.e. the length scale at which the linear confining potential due
to the Josephson coupling dominates over the logarithmic interaction due to magnetic effects,
is pushed beyond the effective screening length for the logarithmic interaction among vortices.
This situation is present when the tunnelling between the superconducting layers is suppressed
by relatively large insulating layers, and a proposal for an experimental realization has recently
been given [5]. For a finite number N of magnetically coupled layers, the Pearl type vortex
stack [2] is broken up into a number of coupled pancake vortices of fractional flux [3, 13, 15],
and this configuration undergoes a KTB type phase transition at a layer-dependent temperature
T (N)

KTB = T �
KTB(1 − N−1) which is connected with the dissociation of the stack. This result

has been obtained on the basis of the entropy method first introduced in the ground-breaking
work [3]. Recently, a real space renormalization group (RG) analysis of the case N = 2 has
been performed in [5] using the dilute gas approximation. A priori, it appears to be rather
difficult to generalize this RG analysis for N > 2 layers.

In general, the Ginzburg–Landau (GL) theory [23] provides us with a good theoretical
framework in which to investigate the vortex dynamics in thin films and in layered materials.
Several equivalent models, like field-theoretical, statistical spin models and a gas of topological
defects, have also been used to consider the vortex properties of films and layered systems. The
2D GL, 2D XY and the 2D Coulomb gas models (see e.g. [1, 4] and references therein) are
considered as the appropriate theoretical background for the vortex dynamics of superfluid
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films. The field theoretical counterpart is the 2D sine–Gordon (SG) model [24]. The two kinds
of models belong to the same universality class and produce the KTB phase transition. For
superconducting films one has to consider the 2D GL model in the presence of electromagnetic
interactions [4] or the equivalent gas of topological excitations, the 2D Yukawa gas [21]. The
corresponding field theory is the 2D SG model with an explicit mass term, the massive 2D SG
model [21].

For Josephson-coupled layered superconductors in the case of very large anisotropy
one should investigate the layered GL model including the Josephson coupling between the
layers [4] (i.e. the Lawrence–Doniach model [25]). In the case of not too large anisotropy
one can use the anisotropic, continuous GL theory [4, 23, 26] which can be mapped onto the
isotropic GL model by an appropriate rescaling method [27]. The corresponding spin model
is the 3D XY model [28] and the equivalent gases of topological excitations are the layered
vortex [29] or vortex loop [28] gases. There are attempts in the literature to construct the field
theoretical counterpart of the isotropic model [30]. In the case of strong anisotropy, the layered
sine–Gordon (SG) model [31] has been proposed as a candidate model where the interlayer
interaction between the topological defects has been described by a mass matrix which couples
the SG fields

1

2
ϕTm2ϕ ≡

N−1∑

n=1

J

2
(ϕn+1 − ϕn)

2,

where ϕ = (ϕ1, . . . , ϕN ) and ϕn (n = 1, . . . , N) are one-component scalar fields. Recently,
we showed in [1] that the layered SG model with the above mass matrix is not appropriate for
the description of vortex dynamics of Josephson-coupled layered superconductors.

In the case of purely magnetically coupled layered systems, the layered GL model has to
be used, but excluding the Josephson coupling. Although the interaction potentials between the
topological defects of magnetically coupled layered systems are given in [5, 8, 12, 15], no field
theoretical model has been proposed for the description of vortex dynamics in a finite system
of magnetically coupled superconductors.

Here, our aim is to open a new platform for considering the vortex dynamics of
magnetically coupled layered systems by constructing a multi-layer sine–Gordon (MLSG) type
field theoretical model where the two-dimensional sine–Gordon (2D SG) fields characterizing
the layers are coupled by an appropriate general mass matrix,

1
2ϕT M2ϕ ≡ 1

2 G

( N∑

n=1

ϕn

)2

.

By the exact mapping of the MLSG model onto an equivalent gas of topological defects, we
recover the interaction potential given in [5, 8, 12, 15] and, hence, prove the applicability of the
model. We analyse the phase structure of the MLSG model by a differential renormalization
group (RG) method performed in momentum space, which is in general easier to perform than
that in real space, and determine the layer dependence of T (N)

KTB. In our field theoretical RG
approach, the RG flow can be calculated in one step for an arbitrary number of layers, and the
study of the intrinsic finite size effect of thin film superconductors [4, 21] and of finite layered
systems is facilitated.

This paper is organized as follows. In section 2, we define the multi-layer sine–Gordon
model and show by its exact mapping onto the equivalent gas of topological excitations that
it is suitable for describing the vortex dominated properties of magnetically coupled layered
superconductors. In section 3, a renormalization group analysis of the multi-layer sine–Gordon
model is performed within the framework of the Wegner—Houghton renormalization group
method, in momentum space for general N , and with a solution that spans the entire domain
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from the ultraviolet (UV) to the infrared (IR). The layer number dependence of the critical
temperature of the multi-layer sine–Gordon model is determined by using the mass-corrected
linearized RG flow. Conclusions are reserved for section 4.

2. The multi-layer sine–Gordon model

The multi-layer sine–Gordon (MLSG) model consists of N coupled two-dimensional sine–
Gordon (2D SG) models of identical ‘frequency’ b, each of which corresponds to a single layer
described with the scalar fields ϕn(n = 1, 2, . . . , N). Its Euclidean bare action (we imply here
the sum over μ = 1, 2)

S[ϕ] =
∫

d2r [ 1
2 (∂μϕ)T(∂μϕ) + V (ϕ)] (1)

contains the interaction terms

V (ϕ) = 1
2ϕ

T M2ϕ −
N∑

n=1

yn cos(bϕn) (2)

with the O(N) multiplet ϕ = (ϕ1, . . . , ϕN ). We can choose the fugacities yn > 0 without loss
of generality, ensuring that the zero-field configuration is a local minimum of the action (see
chapter 31 of [32]). The mass matrix describes the interaction between the layers and is chosen
here to be of the form

ϕT M2ϕ = G

( N∑

n=1

anϕn

)2

, (3)

where G is the strength of the interlayer interactions, and the an are free parameters. As will
be explained below, any choice with a2

n = 1 for all n = 1, . . . , N reproduces exactly the same
layer dependence of T (N)

KTB as found in [3, 5]. In this case, the layers can be assumed to be
equivalent and, as a consequence, the fugacity yn ≡ y for n = 1, 2, . . . , N . The most obvious
choice fulfilling a2

n = 1, namely an = 1 for all n = 1, . . . , N , reproduces the interlayer
interaction between pancake vortices given, e.g., in equation (89) of [15], and we will restrict
our attention to this choice in the following.

The MLSG model has a discrete symmetry under the shift of the field variable ϕ → ϕ +�

with � = (l12π/b, . . . , lN 2π/b) where the ‘last’ integer lN = − ∑N−1
n=1 ln is fixed but all the

other integers ln (n = 1, . . . , N − 1) can be chosen freely (to see this, one just diagonalizes
the mass matrix). The single non-vanishing mass eigenvalue is MN = √

NG , and hence
the model possesses N − 1 massless 2D SG fields and a single massive 2D SG field. After the
diagonalization of the mass matrix by a suitable rotation of the fields, the model thus is invariant
under the independent separate shifts of N − 1 massless fields, but the explicit mass term of
the single massive mode breaks the periodicity in the ‘massive’ direction of the N-dimensional
internal space.

One crucial observation is that the partition function of the MLSG model, whose path
integral formulation reads

Z = N
∫

[Dϕ] exp (−S[ϕ]), (4)

can be identically rewritten in terms of an equivalent gas of topological excitations (vortices),
whose interaction potentials are exactly equivalent to those of [5, 8, 12]. This finding constitutes
a generalization of known connections of the d-dimensional globally neutral Coulomb gas and
the d-dimensional sine–Gordon model, as discussed in chapter 32 of [32], and can be seen
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as follows. In equation (1), one artificially introduces the vectors fn ≡ (δ1n, . . . , δNn) as
projection operators to rewrite

∑N
n=1 cos(bϕn) = ∑N

n=1 cos(b f T
n
ϕ), one expands the periodic

piece of the partition function (4) in a Taylor series, and one introduces the integer-valued
charges σα = ±1 of the topological defects which are subject to the neutrality condition∑2ν

α=1 σα = 0. This leads to the intermediate result

Z = N
∞∑

ν=0

(y/2)2ν

(2ν)!
2ν∏

i=1

( N∑

ni =1

∫
d2ri

) ∑

σ1,...,σν=±1
σν+γ =−σγ ,γ∈{1,...ν}

×
∫

D[ϕ] exp

[
−

∫
d2r 1

2ϕ
T (−∂2 + M2)ϕ + ibρT ϕ

]
, (5)

where ∂2 ≡ ∂μ∂μ, and

ρ(r) =
2ν∑

α=1

σαδ(r − rα) f
nα

. (6)

We have thus placed the 2ν vortices, labelled with the index i , onto the N layers, with vortex i
being placed onto the layer ni . The Gaussian integration in equation (5) can now be performed
easily, and the inversion of the matrix −∂2 + M2 can be accomplished by going to momentum
space. Via a subsequent back-transformation to coordinate space, we finally arrive at the
result

Z =
∞∑

ν=0

(y/2)2ν

(2ν)!
( 2ν∏

i=1

N∑

ni =1

∫
d2ri

) ∑

σ1,...,σν=±1
σν+γ =−σγ ,γ∈{1,...ν}

× exp

[
−b2

2

2ν∑

α,γ=1

σασγ (δnαnγ
Aαγ + (1 − δnαnγ

)Bαγ )

]
, (7)

where δnm represents the Kronecker delta. Equation (7) implies that the parameter b2 in
equation (2) can naturally be identified as being proportional to the inverse of the temperature
of the gas, b2 ∝ T −1. The potentials Aαγ ≡ A(�rα, �rγ ) and Bαγ ≡ B(�rα, �rγ ) are the intralayer
and interlayer interaction potentials, respectively. They read

Aαγ = − 1

2π

N − 1

N
ln

(
rαγ

a

)
+ 1

2π

1

N

[
K0

(
rαγ

λeff

)
− K0

(
a

λeff

)]

=

⎧
⎪⎪⎨

⎪⎪⎩

− 1

2π
ln

(
rαγ

a

)
(rαγ 	 λeff)

− 1

2π

[
N − 1

N
ln

(
rαγ

λeff

)
− ln

(
λeff

a

)]
(rαγ 
 λeff),

(8a)

where rαγ = |�rα − �rγ |, and

Bαγ = 1

2π

1

N

(
ln

(
rαγ

a

)
+

[
K0

(
rαγ

λeff

)
− K0

(
a

λeff

)])

=

⎧
⎪⎨

⎪⎩

0 (rαγ 	 λeff)

1

2π

1

N
ln

(
rαγ

λeff

)
(rαγ 
 λeff).

(8b)
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K0(r) stands for the modified Bessel function of the second kind, a is the lattice spacing which
serves as an UV cut-off and an effective screening length λeff is introduced which is related
inversely to the non-zero mass eigenvalue of the mass matrix (3), λ−1

eff = MN = √
NG . The

relation K0(r) = − ln(r) + ln 2 − γE +O(r) has been used in the derivation of the asymptotic
short- and long-range forms in equations (8a) and (8b), and only the leading logarithmic terms
are indicated (γE = 0.577 216 . . . is Euler’s constant).

The interaction potentials (8) have the same asymptotic behaviour as the vortices of
magnetically coupled superconducting layers [5, 8, 12, 15] (for the intralayer and interlayer
interactions see equations (86) and (89) of [15], under the substitution �D = �s/N). This
observation shows that the MLSG field theory is suitable for describing the vortex dynamics in
magnetically coupled layered systems. A few remarks are now in order. (i) The prefactor
(N − 1)/N appearing in the intralayer interaction indicates the existence of vortices with
fractional flux in the MLSG model. (ii) For small distances r 	 λeff, the interlayer interaction
B disappears and the intralayer potential A has the same logarithmic behaviour with full flux
as that of the pure 2D SG model (which belongs to the same universality class as the 2D XY
model and the 2D Coulomb gas). Therefore, the MLSG model for small distances behaves as
an uncoupled system of 2D SG models. (iii) For the case N = 1, there exists no interlayer
interaction, and the intralayer potential is logarithmic for small distances and vanishes for large
distances. Consequently, there are always free, non-interacting vortices in the model which
push the KTB transition temperature to zero. The MLSG model for a single layer reduces to the
massive 2D SG model discussed in [4, 18, 21, 22] where the periodicity in the internal space is
broken and the KTB transition is absent. (iv) In the bulk limit N → ∞, the effective screening
length and the interlayer interaction disappear (λeff → 0, Bαγ → 0), and the intralayer potential
has a logarithmic behaviour with full flux; thus the MLSG model predicts the same behaviour
as that of the pure 2D SG model with T (∞)

KTB = T �
KTB. Alternatively, one may observe that

for N → ∞, the effect of the infinitely many zero-mass modes dominates over the effect
of the single remaining massive mode entirely, leading to a constant limit for the transition
temperature as N → ∞.

For N = 2 layers, the MLSG model (with the choice an = (−1)n+1) has been proposed for
describing the vortex properties of Josephson-coupled layered superconductors [31]. However,
the above discussed mapping indicates that any layered sine–Gordon model, whatever the mass
matrix, can be mapped onto an equivalent gas of topological excitations, whose interaction
potentials are determined by the inversion of a two-dimensional propagator of the form
−∂2 + M2. Any such propagator, upon back-transformation to coordinate space, can only
lead to a logarithmic behaviour for the vortex interactions at small and large distances, and
consequently, cannot possibly reproduce the confining linear long-range intralayer interaction
given in equation (8.42) of [4] and in [31]. The candidate [31] for a mass matrix ϕTm2ϕ =
J

∑N−1
i=1 (ϕi − ϕi+1)

2 has also been discussed in [1, 33, 34]. This candidate interaction is
inspired by a discretization of the anisotropic 3D SG model [35], but it cannot reproduce
the linear confining potential needed for the description of the Josephson-coupled case [1].
The layer-dependent transition temperature of this model is Tc ∝ N−1 and decreases with
the number of layers, and for general N , the mass matrix m2 also leads to different short-
and long-range intralayer potentials as compared to equation (8) and cannot be used for the
description of magnetically coupled N-layer systems, either [1]. Finally, let us note that a
suitable model for the Josephson-coupled layered system could probably be constructed if the
interlayer interaction term is represented by a compact variable, i.e. one coupling the phase
(compact) fields between the 2D planes [17] and not the dual fields.
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3. RG analysis of the multi-layer sine–Gordon model

The above statements on the MLSG model are based on the bare action where the coupling
parameters of the theory are fixed. However, only a rigorous RG analysis enables one to
construct the phase diagram in a reliable manner. For N = 2 layers, the phase structure and
the vortex properties of the magnetically coupled layered system have already been considered
with a real space RG approach [5] using a two-stage procedure, and a momentum space RG
method [31] on the basis of the dilute gas approximation has also been used. Here, we apply a
generalized multi-layer, multi-field Wegner–Houghton (WH) RG analysis developed by us for
the layered SG type models [1, 33, 34, 36, 37] to the MLSG model with an arbitrary numbers
of layers. In the construction of the WH RG equation, the blocking transformations [38] are
realized by a successive elimination of the field fluctuations in the direction of decreasing
momenta, in infinitesimal momentum shells, about the moving sharp momentum cut-off k
(see [39]). The physical effects of the eliminated modes are transferred to the scale dependences
of the coupling constants (e.g., y ≡ y(k)). The WH RG equation in the local potential
approximation (LPA) for the MLSG model with N layers reads

(2 + k∂k)Ṽk = − 1

4π
ln[det(δi j + ∂ϕi ∂ϕ j Ṽk)], (9)

where we have defined the dimensionless blocked potential as Ṽk ≡ k−2 Vk . We make the
following ansatz for the blocked potential:

Ṽk = 1
2 G̃k

( N∑

n=1

ϕn

)2

+ Ũk(ϕ1, · · · ϕN ), (10)

where the scale dependence is encoded in the dimensionless coupling constants ỹ(k) and G̃(k)

which are all related to their dimensionful (no tilde) counterparts by a relative factor k−2.
Inserting the ansatz (10) into equation (9), the right-hand side becomes periodic, while the
left-hand side contains both periodic and non-periodic parts [34, 36].

In order to go beyond the dilute gas approximation, we calculate a mass-corrected UV
approximation of equation (9) by expanding the logarithm of the determinant in the right-
hand side of equation (9) in powers of the periodic part of the blocked potential. Because
this procedure has been discussed at length in [33, 34, 36], we immediately state the result
(cf equation (43) of [36]),

ỹ(k) = ỹ(�)

(
k2 + NG

�2 + NG

) b2

N8π
(

k

�

) (N−1)b2

N4π
−2

, (11)

with the initial value ỹ(�) at the UV cut-off k = �. Let us note that in our RG approach the
dimensionful G and b2 are scale-independent constants. We can immediately read off from
equation (11) the critical value b2

c = 8π/(1 − N−1) and the corresponding KTB temperature
T (N)

KTB ∼ b−2
c = T �

KTB(1 − N−1). The fugacity ỹ is irrelevant (decreasing) for b2 > b2
c and

relevant (increasing) for b2 < b2
c for decreasing scale k (see figure 1). Our RG approach

provides a consistent scheme for calculating higher order corrections to the linearization in the
periodic part of the blocked potential, which is equivalent to higher order corrections to the
dilute gas approximation. For N = 1, the mass-corrected UV scaling law (11), obtained for the
massive SG model, recovers the scaling obtained in [21, 40] (no phase transition).

4. Conclusion and summary

In conclusion, we propose the multi-layer sine–Gordon (MLSG) Lagrangian as a quantum field
theoretical model for the vortex properties of magnetically coupled layered superconductors.

7
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Figure 1. In the left panels, the mass-corrected scaling (see equation (11)) of the dimensionless
Fourier amplitude ỹ of the MLSG model for N = 1 (top) and for N = 2 (bottom) layers is
represented graphically for b2 = 4π, 8π, 12π, 16π, 20π (from top to bottom on each panel; see the
dashed curves). We use G = 0.0001 in order to have the UV and IR regimes conveniently located
on the plots, which start at the UV scale � = 1. The dotted line is the extrapolation of the UV
(k 
 MN ) scaling to the IR (k 	 MN ) region. For N = 1 layers, ỹ is always relevant (∼k−2)
in the IR. For N = 2 layers, ỹ is relevant for b2 < 16π in the IR and irrelevant for b2

c > 16π .
Thus, the two-layer MLSG model undergoes a KTB type phase transition at b2

c = 16π . In general,

the KTB transition temperature of the MLSG model is layer dependent, T (N)
KTB ∼ (1 − N−1). If the

system has a finite volume (R < ∞), the thermodynamic limit cannot be taken automatically and,
as a simple realization of the finite size effect, a momentum scale kmin ∼ 1/R appears in the model.
For R < λeff (i.e. kmin >

√
NG = MN ), the phase structure of the MLSG model is determined by

the UV scaling which predicts a KTB type phase transition at b2
c = 8π for any number of layers.

Note that the MLSG model cannot be assumed to belong to the same universality class
as the layered Ginzburg–Landau model [1], which entails a discretization of the Ginzburg–
Landau model in one of the spatial directions. The mapping of the MLSG model onto
the gas of topological defects is used to clarify the suitability of the MLSG model for
magnetically coupled layered systems. We investigate the scaling laws for the MLSG model
using a functional formulation of the Wegner–Houghton RG approach in the local potential
approximation. The linearization of the RG flow in the periodic part of the blocked potential
(and not in the full potential) enables us to incorporate the effect of the interlayer interaction into
the mass-corrected UV scaling laws, which improve the dilute gas approximation. The mass-
corrected Wegner–Houghton UV scaling laws indicate that for general interlayer interactions
of the type of equations (3), one finds two phases separated by the critical value b2

c =
8π/(1 − N−1), where N is the number of layers. This determines the layer dependence of
the KTB transition temperature T (N)

KTB = T �
KTB (1 − N−1) in full agreement with [3, 5]. Perhaps

further investigations of the MLSG model (e.g. beyond the local potential approximation) and
other generalizations of the momentum space RG studies presented here could enrich our
understanding of the layered structures.
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